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ABSTRACT

The main purpose of this project is to choose the best test among the
three selected tests on homogeneity of variances for small sample sizes from
Normal distributions. The three tests considered in this study are Bartlett's,

Hartley’s and Breusch-Pagan tests which are based on sample variances.

SAS (9.1 ) and S-Plus programs are used in the generation of random
samples, computing the test statistic and determination o%stimated type I

error and power of the tests. Comparisons are carr out among the tests,

based on the estimated type I error and the e ted power, for number of
samples of five and ten. In this study, thegrelationship between the estimated
L 4

power of tests and number of unequ ’%@e variances is also investigated.

Project findings indic %ﬁ’( Breusch-Pagan is the best, since it portrays
the most powerful test\@ipared to Hartley’'s and Bartlett's. However, power
increases most rapidly for Hartley’'s test. Furthermore, the power of tests
increases when total number of observations and number of unequal sample
variances increase. The recommendation is that, the Breusch-Pagan is the best

among the three tests for small sample sizes from Normal distributions.
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1.1

CHAPTER 1

INTRODUCTION

Overview

The assumption of homogeneity of variances, also known as
homoscedasticity , is one of the critical assumptions underlying most

parametric statistical procedures such as analysis of variance, ANOVA.

Testing for homogeneity of variances i@&ant for at least two

purposes:

1. The homogeneity of variance@ts upon the quality of the
variable of interest, esperia\k%squality improvement.
2
omparison of group means, we often

2. In making an appr@
make the assymption“that the within-group variation is constant

( approximat wnilar ) , thus requiring a diagnosis of homogeneity

of variances®

Three tests on homogeneity of population variances considered in
this study are Bartlett’s, Hartley’s and Breusch—Pagan tests that are based
on sample variances and non-complexity. Simulation was conducted to
compute the type I error and power of tests in order to perform a statistical

comparison among those tests.



1.2  Objective

The objectives of this project are :
1. Compute and compare the probability of type I error and the
power of tests among Bartlett's, Hartley’'s and Breusch-

Pagan tests.

2. Find the best test among those tests on homogeneity of

variances considered in this project, %all sample sizes

from the normal distribution.

1.3  Project Organization @

\\

This project paper ;ts of several chapters, all of which
explains the releva s required to report the study. The following
describes the or@a ion of the project paper :

CHAPTER 1 - Contains a brief introduction to the main features in this
project. It presents the objectives of the project.
CHAPTER 2 - Gives an introduction and the literature review of the
selected tests on homogeneity of variances.
Describes the size and power of tests and presents the

factors that affect the power.



CHAPTER 3 - Explains the methodology used in this project, which is the
selected tests on homogeneity of variances ( Bartlett's,
Hartley's and Breusch-Pagan tests ) and simulation
methods.

CHAPTER 4 - Focuses on the results and the comparison study of the
tests. It discusses the conclusions acquired from the

project and recommendation that cavbe\derived from the

simulation results. Q‘
CHAPTER 5 - Gives summary and SL@' or further research.
0%\
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2.2

CHAPTER 2

TESTS ON HOMOGENEITY OF VARIANCES

Introduction

Several tests of homogeneity of variances have been proposed in
the literature between 1930’s to 1970’s ( Bartlett, 1937 ; Cochran, 1941,
1951 ; Hartley, 1950 ; Box, 1953 ; Levene, 1960 ; Breusch and Pagan,
1979 ). Natural selection has left us with only a f w%are presented in
current textbooks. Many authors claim tha Q?on homogeneity of
variances is a prerequisite to analysis _of ‘?r;e and other parametric

statistical procedures. The tests 0 homogdeneity of population variances

considered in this study are B ’\§§ Hartley’'s and Breusch-Pagan tests.

Literature Review &

Hartley’s Test ( Hartley,1950) is the simplest test of homogeneity of

variances, which uses the ratio of the largest to the smallest sample

variances.

Bartlett’s test is one of the most often presented in textbooks and

taught in introductory courses because of its ease of computation.



2.3

The test statistic involves a comparison of the separate within-group

sums-of-squares to the pooled within-group sum-of-squares.

Bartlett's test is known to be powerful if the sampled populations
are normal, but badly affected by non-normality ( Box 1953, Zar 1999 ) .
Pierre and Daniel (1972) who did a simulation study on several tests of

homogeneity of variances found that one of the best overall methods is

Bartlett’s Test. Q~;
Breusch-Pagan Test ( Breusd@gagan 1979 ) is a large-

sample test, which assumes thato\ or terms of the regression model
are independent and norm@ uted. The variance of the error term is

assumed to be related tojthe level of X in the following way :
\Qa log, o7 =y, + 1 X,
Size and Power of tests

The quantities used in this comparison study are the probability of

type I error and power of tests of homogeneity of variances. It is important



to understand the two quantities in order to choose the best performance

among the three tests.

The size of a test, often called the significance level, is the
probability of type 1 error and is usually denoted by a. A type I error occurs
when the null hypothesis is rejected when it is true. This test size is
denoted by alpha, a . It is the extent of the risk of making wrong

conclusions. A 0.05 level means that we are taking a risk of being wrong

five times per 100 trials. 2 Q

The power of a statistical test is Y;ﬁlity that it will correctly
lead to the rejection of a false n%nypothesis ( Greene, 2000). The
statistical power is the ability ’\\est to detect an effect, if the effect
actually exists ( High, 2000 )\Power is denoted by ( 1 — B ), where B
is the probability of ty, error, that is, the probability of failing to reject
the null hypothesis%n it is false. ( Refer to Table 3.1.1 ). Notationally,

a= P(typelerror) =P (RejectHo/Hptrue)

and B

P (type Il error ) = P ( fail to reject Ho / Ho false ) .

Hence,

Power = 1—-B = 1 - P (fail to reject Ho / Ho false )

= P (reject Ho / Hp false ) .



Thus, an experimenter would want to use the most powerful test, which is
one with maximum power. Table 2.3.1 show the events leading to the

occurances of each of the error types and their probabilities.

Table 2.3.1 : Size and Power of tests.

Do not reject Ho Reject Ho
Hois true Correct Decision Type I error
(1 - a) = confidence level a= of tests
nificance level
Type I error )

Ho is false Type II error E Correct Decision

B = P( Type IL &ror (1 - B) = Power of tests
« AN\

>

2.3.1 Factors Aﬁec@@%wer.

The power of a hypothesis test is affected by several factors.

1. Sample size.
Increasing sample size makes the hypothesis test
more sensitive, that is more likely to reject the null

hypothesis when it is false. Thus, increase the power of the

test.




Size of the difference between population means.

The size of the difference between population means
is an important factor in determining power. Naturally, the
more the means differ from each other, the easier it is to
detect the difference. Hence, the smaller the probability of

type Il error ( B ), the larger the power.

Significance level.

The higher the significance le %igher the power
of the test. If we increase the s Qﬁe level, we reduce
the region of acceptance. ?I we are more likely to
reject the null hypothe&@his means that it is less likely to
accept the null hy ’%ls when it is false, that is, less likely

to make a type error. Hence, the power of the test is

increasecyb

Distribution of a population.
One other factor that may affect the power is
normality of the distribution. Deviations from the assumption

of normality usually lower the power of a test.



Type of statistical procedure.

The type of statistical procedure used may also affect
the power of a test. Some of the distribution-free tests are
less powerful than other tests when the distribution is normal
but more powerful when the distribution is highly-skewed.
One-tailed tests are more powerful than two-tailed tests as

long as the effect is in the expected direction. Otherwise,

oF

Choice of an experimental d .

their power is zero.

The choice of an imental design can have a

profound effect o%Withinsubject designs are usually
2

much more p@k an between-subject designs.

-
\Q‘Zr



3.1

CHAPTER 3

METHODOLOGY

Introduction

This chapter details the procedures conducted in this study,
performed on uncontaminated data set. The procedures carried out are

presented in the following schematic diagrams.

Figure 3.1.1 : Schematic Diagram of SAS and S-

s%rocedures

to determine the estimated typ

Generate random saniples from Normal
distributions wi} i t means and
con iance.

h 4
Calcul%e%ch of the sample variance.

A

\\

h 4
Compute the test statistic and construct the
decision rule at a = 0.05 for each of the
test on homogeneity of variances.

Determine the rate of rejection of the null
hypothesis after 1000 simulations.

10



Figure 3.1.2 : Schematic Diagram of SAS and S-Plus procedures
to determine the estimated power of tests on

homogeneity of variances.

Generate random samples from Normal
distributions with different means and
several cases of unequal sample variances.

Y
Calculate each of the samg riance.

AN
N
Compute \e t statistic and
construct t ion rule at a = 0.05

for eich e selected tests.

Determine the rate of rejection of the
null hypothesis after 1000 simulations.

11



3.2

Selected Tests on Homogeneity of Variances.

The set of hypotheses to be tested is :
Ho: 0'12 = ()'22 == O'j ; a=number of random samples.
H 1. not all the variances are equal.

The critical values are determined at o« = 0.05 .

3.2.1 Hartley’s Test ( Hartley, 1950).

A : Equal Sample Sizes Across Levels (all ni= n).

1. Calculate the sample v Sl.2 for each of the ‘@’

factor levels ( samp

2. Compute S&Fmax test statistic :

_ largest s} s

(b. ~ smallest s* s,

3. Fme critical value F(a, a,n-1) from F-max table.

2
S
4. If F = =-2% > F(a,a n-1), reject Ho and
max S2

min

conclude that the variances are not all equal.

12



3.2

Selected Tests on Homogeneity of Variances.

The set of hypotheses to be tested is :
H o: 012 = 0'22 =...= O‘f ; a = number of random samples.
H 1: not all the variances are equal.

The critical values are determined at &« = 0.05 .

3.2.1 Hartley’s Test ( Hartley, 1950). ?\

A : Equal Sample Sizes Across Levels (allni=n).

1. Calculate the sample var ances S for each of the ‘@’
factor levels ( samp

2. Compute Ha@max test statistic :

_ largest s; s

max

ax 272
\Q smallest s,  s_.

3. Find the critical value F(a, a,n-1) from F-max table.
S2
4, ¥ =22 5 F(qg,a,n-1),reject Ho and
max 2
smin

conclude that the variances are not all equal.

12



B : Unequal Sample Sizes Across Factor Levels.
¢ When the number of observations ( n i ‘s) for each factor
level are not all equal, but the n i's are relatively close, the
largest of the sample sizes nnhax may be substituted for n
when determining the critical value F( a, a, Npax—1) .
e This procedure leads to a slight positive bias in the test. That

is, it will reject H o more frequently than should be the case.

3.2.2 Bartlett’s Test ( Douglas C. MontgomeIQi 0)

q ;
1. Test statistic: %o :2-302§

where g :( ’\%l%gw sf; —Z(ni -—1)10g10 51-2

i=1

‘0(3'£*+?(5135(2(”' -1 —(N—a)-')

§S; = sample variance of the i th. Population.
N 2
2.(n=1)s,
2 i=1
S =
" (N-a)

2 2
2. RejectHoif Xy = X4 4-1)

13



3.2.3 Breusch-Pagan Test ( Kutner, Nachtsheim, Netter ; 2004 )

It is assumed that o’ is related to X ; as follows :

[log, Giz =7, + 7 X;]

Cy 2
1. Test : Ho:y; =0 ( => O; is constant)
H, :y, #0

2. Test statistic : X;

=
SSE Q~E
3. Reject Ho if 2 ‘
J @ (1-a,v)
3.3 Simulation Methods E
. The computer programs were written in SAS ( 9.1 ) and S-Plus to

carry out the 1000 independent simulations for the selected tests of
homogeneity of variances. The programs were designed to
compute the three test statistics described in section 3.2 and
compared with their respective critical values at a = 0.05 . Random

data were generated from normal distributions with different means

and several cases of equality of variances.

14



In the study of probability of type 1 error, data were generated in
such a way that the null hypothesis was true ( that is, the population
variances are equal ). The rate of type I error was computed as the
proportion of the simulations whereby the null hypothesis was

rejected at the 5 % significance level.

P (rejectHo/Ho is true)

P ( type 1 error)

= a

We would like a test to have rate of rejectic@g to 0.05 since
the alpha level used is 0.05 . &

In the power study, data w imulated in such a way that the

2
null hypothesis was false % is, not all population variances are
equal ). Power was computed as the proportion of the simulations

whereby the null thesis was rejected at the 5 % significance

level. Q

Power of test =1-8 .

= P (reject Ho/Hois false ).

Hence, we would like a test to have high power.

15



4.1

CHAPTER 4

RESULTS AND DISCUSSION

Estimated type I error and power of tests

The observed rate of rejection after 1000 simulations are reported
in Table 4.1.1 , Table 4.1.2 and Table 4.1.3 . Samples are generated
from the normal distribution, with different means and several cases of

sample variances.

Table 4.1.1: The estimated type I error for s, Bartlett’s and

Breusch-Pagan tests . W

Norm%‘duﬁerent o2=1)
case | ftrt obs Ra ’&tion ( estimated type 1 error )
@ Bartlett B.Pagan
1 5 5 ‘ 0.053 0.054 0.042
2 5 0.046 0.034 0.052
3 5 15 0.03 0.028 0.034
4 5 20 0.051 0.046 0.049
5 10 5 0.064 0.06 0.059
6 10 10 0.038 0.023 0.034
7 10 15 0.03 0.034 0.041
8 10| 20 0.031 0.039 0.05

16




Table 4.1.1 contains the simulated estimated type I error for
Hartley's, Bartlett's and Breusch-Pagan tests with equal sample variances
, which is o2 = 1. The number of treatments or samples is five and ten

with number of observations of 5, 10, 15 and 20 respectively.

Table 4.1.2: The estimated power of the three tests when number of

samples equals to five.

case | trt |obs Normal Rate of rejec st. Power )
( different ;;) Hartley | tt B.Pagan
ol # ol 0.39 572 0.796
1 5 5
le ¢0'22 ;tof 0.977 0.741 0.871
ol . %0 %\* \ 0.673 0.746
oj ;tof@ .888 0.939 0.984
2 1% |19 sriegipo 0.979 0.99 0.995
2 2 0.99 0.988 0.988
o] #, p
@"02 0.983 0.996 1
1 2
3 5115
O_l2¢0_22¢0_32 0.999 1 1
ol 70 1 1 1
o 2 2 0.996 1 1
4 5120 ol 20l %0} 1 1 1
ol #.# 0. ! ! !




Table 4.1.2 presents the simulated estimated power for the three

selected tests. The number of samples for each case is five and the

number of observations are 5, 10, 15 and 20 respectively with several

cases of unequal sample variances.

Table 4.1.3 : The estimated power of the three tests when number of

samples equals to ten.

Normal on ( Est. Power)
case | trt fobs| (diff. ;) Bartlett | B.Pagan
1
0.665 0.87
1 10 0.994 1
0.995 0.998
0.97 0.996
2 10 ! !
1 1
0.997 1
3 10 1 !
1 1
1 1
4 10 ! !
1 1

18



4.2

Table 4.1.3 provides the simulated results of estimated power for
the three selected tests. The number of samples for each case is ten and

the number of observations are 5, 10, 15 and 20 respectively with several

cases of unequal sample variances.

Discussion on Summarized Results

All the tabulated results are summarized graphically in the foilowing

Figure 4.2.1: Plot of estimated typed e s. number of
observations. ( For nu of samples =5)

figures.

=—dr=—Hartley
=== Bartlett
=== B Pagan

— aipha=0.05

est. type L error

5 10 15 20
no. of observations
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The plots in Figure 4.2.1 shows that Hartley’'s and Bartlett's tests
better than Breusch-Pagan test for sample of five with five observations
for each sample. However, as the total number of observations increases,
Breusch-Pagan exhibits the best test since the points have the shortest

distance from the horizontal line a = 0.05.

Figure 4.2.2 : Plot of estimated type I error vs. number of

observations. ( For number of sam$s~= 10)

\g
" . '\l~®

0.05 -

e I error

[<% === Hartley
2 0.04 - .
. —m Bartlett

2 0.03- \& —+—B.Pagan
e alpha=0.05
0!0 - L d L] L L J L L J v .
5 10 15 20

no. of observations

Plot in Figure 4.2.2 portrays clearly that Breusch-Pagan is the best
test, as the number of observations increases for number of samples of
ten. The plot also displays that Hartley's test is less appropriate for large

total number of observations.



Figure 4.2.3 : Plot of estimated type I error vs. number of
observations.
( Increase both number of samples and observations )

0.07
0.06

_ 0.05

o

2 0.04

2

2 0.03 rtley

"dw'; Bartlett
0.02 ——B.Pagan

= alpha=0.05

0.01

0 ,@‘
5 10 N1 20

no. servations

By taking theQaverage values of the estimated type 1 error in Table
41.1 for both samples of five and ten, we obtained the plot in Figure
4.2.3. The plot confirms that Breusch-Pagan is the best test compared to

the other two tests since the points fall closely around the horizontal line

a=0.05.

21



Figure 4.2.4 : Plot of estimated power vs. number of observations.
( Number of samples =5)

——B.Pagan
— Power=1

11
2 0.9 -
8 0.8 -
E —4— Hartley
g 0.7 1 —e— Bartlett
2 0.6 1

o
[8;]
U'd
=
l
-*I
[$)]
’
o

-

2
Figure 4.2.5: Plot of esti@ wer vs. number of observations.

er of samples = 10)

\Q\ r.
. 0.9 -
[}]
5
o 0.8 1
?}, —a— Hartley
g 0.7 - —o— Bartlett
= —— B Pagan
2 06 - g
= nower=1
0-5 L L4 LJ v LJ v L L L J —

5 10 15 20

no. of observations

22



Both plots in Figure 4.2.4 and Figure 4.2.5 show the same
pattern of estimated power versus number of observations for number of
samples of five and ten. Breusch-Pagan test appears to be more powerful
than the other two tests since the points on both plots are closer to the
horizontal line at power = 1. On the other hand, it is also observed that
the power increase most rapidly for Hartley’'s test. Moreover, both plots
illustrate a great improvement of the power of tests when the total number

of observations is increased.

Figure 4.2.6 : Plot of estimated power v Eber of unequal sample

variances. (Number@ les=5)

power
o©
&
: /

T o —i— Hartley
g ~o— Bartlett
ﬁ@ —&—B.Pagan
q’ -

—— Power=1

2 3 4
no. of unequal sample var.
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The plot of estimated power versus number of unequal sample
variances for number of samples of five in Figure 4.2.6 also indicates
that the best test is Breusch-Pagan. It also points out that the estimated
power decreases for Bartlett's and Breusch-Pagan when the number of
unequal sample variances is four. This is so because when all the four
samples, out of five, have unequal variances, it means that all samples

have unequal variances. It is also noticeable that the power of test is still

Figure 4.2.7 : Plot of estimated power .Yﬁber of unequal sample
variances. ( Number les=10)

&

increasing for Hartley’s.

5 0.95

3

o —a— Hartley

° .

g \Q\ —e—Bartlett

£ —&—B.Pagan

w 0.85 -

o - power=1
0.8 v v v v r v v "

2 5 8

no. of unequal sample var.
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4.3

Figure 4.2.7 contains the plot of estimated power versus number of
unequal sample variances for number of samples of ten. This plot
iHustrates the most powerful test is Breusch-Pagan since it has nearest
points nearest to the horizontal line , power = 1. In addition, it can be seen
from the plot that the points for Bartlett's and Breusch-Pagan tests almost
reach the maximum power = 1 when five out of ten samples have unequal
variances. Furthermore, the plot also reveals that the power of tests

increases when the number of unequal variances increases.
Conclusions and Recommendation. &2

The conclusions that can be drawnwsthe figures in section 4.2 are as

0\\
follows : @\
1. [ Refer to Figure 4.2.1 d Figure 4.2.2 ]

Breusch-Paganfi best test since the points on the plots ( that

represent t&timated type I error values ) exhibit the shortest
distance from the horizontal line a = 0.05 , as the number of

observations increases for each sample.
2. [ Referto Figure 4.2.3 ]

If both number of samples and number of observations increase,

the plot confirms that Breusch-Pagan is the best test compared to

25



Hartley’s and Bartlett’s. ( The points represent the average values

of the estimated type I error)

[ Refer to Figure 4.2.4 and Figure 4.2.5 |

In general, the power of tests improves greatly when the number of
observations increases. Among the three tests, Breusch-Pagan test
appears to have more power than the other two tests since the
points close to the horizontal line at power = 1. On the other hand, if

one observe the estimated power values a he plots, it can be

concluded that the power increase mos@d for Hartley's test.

[ Referto Figure 4.2.5 and Figu 2.7 ]
2

Furthermore, we can g hat Breusch-Pagan and Bartlett’s

tests could be use@e number of observations.

[ Refer i 4.2.6 and Figure 4.2.7 ]
Besides that, the plots also reveal that the power of tests
increases when the number of unequal sample variances

increases.

26



6. Overall comparisons between the estimated type I error and the

power of tests suggest that Breusch- Pagan is the best test.

Therefore, in the light of these conclusions, it is recommended that
Breusch-Pagan test is the best among the three tests when data are

Normal and sample sizes are small.
e
@?‘

-
&
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CHAPTER 5

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5.1  Summary

The project findings may be summarized as follows :

From the study of estimated type I error and power of
tests, Breusch-Pagan is suggested as the best test

compared to Bartlett’'s and Hartley’ Vﬁts for number of

samples of five and ten. Q~
Generally, the po$ tests improves greatly when

the number of ob% tions increases. Among the three
selected te usch-Pagan appears to be the most
powerfuNéLas the total number of observations increases.

When number of unequal sample variances

increases, so does the power of tests.

28



5.2

Suggestions for Further Research

The following are suggestions for further research related to this

project :

1. In future comparison studies, include other tests of
homogeneity of variances which are not based on sample
variances only, or other robust tests such as Modified

Levene's test.

2. Compare the performarvgthe tests using samples
o

from several other symmet r skewed distributions for

instance Cauchy an%gonential distributions, and consider

*
unequal sam@cross factor levels.
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PROGRAM 1
( SAS 9.1 — Estimated type 1 error)

OPTION NODATE NONUMBER;
DATA SimBartHart (keep=rateb rateh);
rejectb=0; rejecth=0;
DO rep=1 to 1000;
SQ = 0; SLOG=0;Smax=0;Smin=234;mu=0;sigma=1;
/* Do for each row, i=1,...,5 */
DO I=1 to 10;
SUMY=0; SSQY=0;
ARRAY vy {10} vyv1-v10;
ARRAY SSQ{10} SSQ1-s5SSQ10;
/* given row i, Do for each column */
DO J=1 to 10;
yvy{jl=mu+sigma*rannor (99999) ;

SUMY=SUMY+y{3j}; SSQY=SSQY+y{'}s%z5ﬂ;
/* End for loop j*/ Q
END;
SSQ{I}=(1/9)*(SSQY—((SUD® /10) ;

SQ=8Q+SSQ{1};

/*OUTPUT; */

SLOG=SLOG+9*L0OG10 ( S&

if (SsQ{I}>Smax) t%&i ax=SSQ{1};
if (SSQ{I}<Smin) Q&n Smin=SSQ{1I};
/*OUTPUT; */

mu=mu-+2;
/* End for loo%/
END;

SSQP=(9/9 ;

Q=90*LOG10 ( QP) -SLOG;

C=281/270;

Bart=2.3026* (Q/C) ;

Hart=Smax/Smin;

/ *OUTPUT; */

If(Bart>16.92)then rejectb=rejectb+1;

If (Hart>9.91)then rejecth=rejecth+1;
End;
rateb=rejectb/1000;
rateh=rejecth/1000;

PROC PRINT;
var rateb rateh;

RUN;



PROGRAM 2
( SAS 9.1 - Estimated power of test )

OPTION NODATE NONUMBER;
DATA SimBartHart (keep=rateb rateh);
rejectb=0; rejecth=0;
DO rep=1 to 1000;
SSQ = 0; SLOG=0;Smax=0;Smin=234;mu=0;sigma=1;
/* Do for each row, i=1,....,5 */
DO I=1 to 10;
SUMY=0; SSQY=0;
If (1<i<=2) then sigma=2;
If (2<i<=3) then sigma=3;
If (3<i<=4) then sigma=4;
If (i>4) then sigma=5;
ARRAY y{*} yl-y10;

/* given row i, Do for each colump, */
DO J=1 to 10; ‘;>~
y () =mu+sigma*rannor (99999) ;
SUMY=SUMY+y (Jj) ; SSQY=SSQY, Y *y (F) ;

/* End for loop j*/ ?\
END;

SSQI=(1/9) * (SSQY- ( (SUMY) 10) ;
/*OUTPUT; */

SSQ=SSQ+SSQI; ¢
SLOG=SLOG+9*LOG10 ’&\ ;

if (SSQI>Smax) th S§Smax=SSQI;

if (SSQI<KSmin) Smin=SSQI;

/*OUTPUT; */
mu=mu+2;

/* End for 1 @ */
END ; '\{;?
SSQP=(9/90) *5sQ;
0=90*LOG10 (SSQP) -SLOG;
c=281/270;
Bart=2.3026*(Q/C) ;
Hart=Smax/Smin;
/ *OUTPUT; */
If (Bart>16.92)then rejectb=rejectb+l;
If (Hart>9.91) then rejecth=rejecth+1;
End;
rateb=rejectb/1000;
rateh=rejecth/1000;
PROC PRINT;
var rateb rateh;
RUN;



PROGRAM 3

( SPLUS - Estimated type 1 error )

> simHomVar3 <- function(rep)
{
rejectBart <- 0
rejectHart <- 0
rejectX2 <- 0
for(m in l:rep) {
#treatment = 10
#nobs = 5
x <- rep{(seg(l5, 60, 5), rep(5, 10))
y <- rep(0, length(x))
mu <- seqg(0, 18, 2)
sigma <- rep(1l, 10)
start <- 1 ?\
end <- 5
i <- 1 :2
for(level in unique(x))
set.seed(start * m)
yv[start:end] <- rnorm mean = mul[i], sd =
sigma[i])
i <- i+ 1
start <- end + \\
end <- end + 5 ]\

}

data <- data.fframe(x, y)

#Bartlet

a <- leng ique (x))

S2 <- , a)

medlevel - rep(0, a)

i <-1

for(level in unique(x)) {
S2[i] <- var(data$yl[datas$x == levell)
medlevel [i] <- median(data$y[data$x == levell])

i <-1i + 1
}
Sp2 <- (4/40) * sum(S2)
g <- 40 * 10gl0(Sp2) - 4 * sum(logl0(S2))
c <- 131/120
Bart <- (2.3026 * q)/c
#Hartley
Hart <- max(S2)/min(s2)
#Breusch - Pagan



}

> resultld <- simHomVar3(1000)

(1]

regrl <- 1Im(y ~ x, data)
SSE <- sum(residuals(regrl) "2)
res2 <- residuals(regril) "2
newdata2 <- data.frame(res2, x)
regr2 <- Ilm(res2 7~ x, newdata2)
SSRstar <- sum((fitted(regr2) - mean(res2))"2)
X2 <- (SSRstar/2)/((SSE/length(x))"2)
rejectBart <- rejectBart + ifelse(Bart > 16.92,
1, 0)
rejectHart <- rejectHart + ifelse(Hart > 44.6,
0)
rejectX2 <- rejectX2 + ifelse(X2 > 3.84, 1, 0)
}
rateBart <- rejectBart/rep
rateHart <- rejectHart/rep
rateX2 <- rejectX2/rep
return(rateBart, rateHart, rateX2)

Q.

$SrateHart: ¢

[1]

> result3 ?\
SrateBart:
0.06

0.064 ’%\

SrateX2:

(1]

N
&

1,



PROGRAM 4

( S-PLUS - Estimated power of tests )

> simHomVar23b <- function (rep)
{
rejectBart <- 0
rejectHart <- 0
rejectX2 <- 0
for(m in 1l:rep) {
#treatment = 10
#nobs = 5
x <- rep(seqg(l5, 60, 5), rep(5, 10))
y <- rep(0, length(x))
mu <- seqg(0, 18, 2)

#here sigmal=6, sigma2=5, sigma3-= sigmad4=3,
sigma5=2, others=1

sigma <- c{6, 5, 4, 3,

start <- 1
end <- 5
i <- 1

for(level in unlque(x))
set.seed(start *

y[start:end] <- , mean = muli]}, sd =
sigmali]) &

i<-1i + 1

start <-
end <- +
}
data <- d rame(x v)

#BartlaQ
a <- lend&th (unique (x))

S2 <- rep(0, a)
medlevel <- rep(0, a)

i <-1

for{level in unique(x)) {
S2{i] <- var(datas$y[datas$x == levell)
medlevel [i] <- median(data$Sy([data$x == levell)

i<-1i + 1
}
Sp2 <- (4/40) * sum(S2)
g <- 40 * 1logl0(Sp2) - 4 * sum(logl0(sS2))
c <- 131/120
Bart <- (2.3026 * q)/c



}

}

#Hartley
Hart <- max{(S2)/min(S2)

#Breusch - Pagan

regrl <- 1lm(y ~ x, data)

SSE <- sum(residuals(regrl) "2)
res2 <- residuals(regrl) "2
newdata2 <- data.frame(res2, x)
regr2 <- lm(res2 ~ x, newdataZ2)

SSRstar <- sum{((fitted(regr2) - mean(res2))”

X2 <- (SSRstar/2)/((SSE/length(x))"2)

rejectBart <- rejectBart + ifelse(Bart > 16.92,

1, 0)

rejectHart <- rejectHart + ifelse(Hart > 44.

0)
rejectX2 <- rejectX2 + ifelse(X2 > 3.84, 1,

rateBart <- rejectBart/rep
rateHart <- rejectHart/rep
rateX2 <- rejectX2/rep

return(rateBart, rateHart, rat X%(E ’

> result23b <- simHomVar23b (100
> result23b
SrateBart:

(1]

0.994 ’:i§;k~'

SrateHart:

(1]

(1]

0.921

SrateX2: $

A Q)

2)

6,

0)

1,
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